STRUCTURE OF TRIGONOSTEMONE, A NEW PHENANTHRENONE FROM THE THAI PLANT TRIGONOSTEMON REIDIOIDES

Udom Kokpol,* Supa Thebpatiphat, Suprarb Boonyaratavej, Vipa Chedchuskulcai,
Natural Products Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand Chao-Zhou Ni, ${ }^{1}$ Jon Clardy,
Department of Chemistry-Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Chaiyo Chaichantipyuth,
Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Cbulalongkorn Univeristy, Bangkok, Thailand
Vallapa Chittawong, and D. Howard Miles
Department of Chemistry, University of Central Florida, Orlando, Florida 32816

Abstract

Trigonostemone [1] has been isolated from Trigonostemon reidioides. Its structure has been established spectroscopically and confirmed by X-ray crystallography.

Trigonostemon reidioides Craib (Euphorbiaceae) is found predominantly in northeastern Thailand (1). Extracts of the roors are used in traditional medicine as an expectorant and a laxative and in treatment of skin diseases (2). There are no reports involving chemical investigations of this species; however, there is a verbal report (the reference cannot be confirmed) of an investigation in a Thai government research report. The limited investigation of the chemistry of this plant prompted an examination of the constituents of the roots. In this paper, we report the isolation and structure elucidation of the compound 1,1,7-trimethyl-3,6,9-trimethoxy-2-phenanthrenone [1] from T. reidoides. This compound was assigned the name trigonostemone.

Pure trigonostemone [1] was crystallized from a hexane/ CHCl_{3} eluent of a Si gel column as green needles, mp 184-185 . A molecular formula of $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$ was established by eims ($[\mathrm{M}]^{+} m / z 326$) and elemental analysis. This formula provided ten degrees of unsaturation. The presence of aromaticity in the molecule was suggested by ir (KBr) bands at 1630 and $1460 \mathrm{~cm}^{-1}$ and by the uv absorption at $256 \mathrm{~nm}(\log \epsilon=4.57)$ and 403 ($\log \epsilon=4.09$).

The presence of an α, β-unsaturated ketone (3) was indicated by the uv absorption at $213 \mathrm{~nm}(\log \epsilon=4.74)$ and $234 \mathrm{~nm}(\log \epsilon=4.47)$ and by an ir (KBr) band at 1670 cm^{-1}. This compound gave a positive test to $\mathrm{KMnO}_{4}, \mathrm{Br}_{2}$ in CCl_{4}, and 2,4-dinitrophenylhydrazine, which confirmed the presence of a double bond and a carbonyl

1

[^0]group. The aromatic nature of trigonostemone [1] was confirmed by the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right)$ spectrum, which gave resonances at $\delta 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.32(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10)$, and $8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$ for three isolated protons on an aromatic ring.

A further study of the ${ }^{1} \mathrm{H}$-nmr spectrum of 1 provided evidence of three methoxy groups at $\delta 3.96$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$) and 4.02 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$ and $\mathrm{H}-16$). The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum also gave signals for a gem-dimethyl group at $1.56(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$ and $\mathrm{H}-12)$, a methyl group at $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$, and a vinylic proton at $6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed nineteen resonances, which indicated a structure with a pair of equivalent carbons. Off-resonance decoupling showed singlets at $\delta 49.52$ (C-1), 199.32 (C-2), 147.42 (C-3), 130.74 (C-4a), 157.80 (C-6), 127.15 (C-7), 114.32 (C9a), 154.93 (C-9), and 119.20 (C-10a), doublets at $\delta 99.01$ (C-4), 110.20 (C-5), 123.37 (C-8), and 100.65 (C-10), quartets for two methyl groups at $\delta 16.65(\mathrm{C}-11$ and $\mathrm{C}-12$) and $\delta 28.33$ ($\mathrm{C}-15$), and three quartets for three methoxy groups at $\delta 55.90(\mathrm{C}-$ 14), $55.36(\mathrm{C}-16)$, and $55.47(\mathrm{C}-13)$. The singlet at $\delta 199.32(\mathrm{C}-2)$ was attributed to a carbonyl, and the singlet at $\delta 49.52(\mathrm{C}-1)$ assigned as the quarternary carbon of a gemdimethyl group.

Consideration of the ${ }^{13} \mathrm{C}$ chemical shifts for the carbons of naphthalene, together with the well-established standard chemical shift values $(4,5)$ for the various substituents (-Me, -OMe), permitted assignment of the chemical shift values for 7 -methyl-1,6-dimethoxy naphthalene. These values closely relate to those obtained for the naphthalenic portion of 1 except for C-3 and C-4 (Table 1). These two carbons are not expected to be in agreement because they were extension points to the other parts of the structure.

The structure of compound $\mathbf{1}$ was confirmed by X-ray crystallography. A com-puter-generated persepctive drawing is shown in Figure 1.

EXPERIMENTAL

Plant collection.-T. reidioides was collected from Karasin in Thailand. A voucher specimen (No. 37033) is deposited at the Forest Herbarium (BKF), Royal Forest Department, Flora of Thailand, Bangkok, Thailand.

Isolation of trigonostemone [1].-The dried, ground roots (16.3 kg) of T, reidioides were extracted in a Soxhlet extractor with hexane. The hexane solution was evaporated in vacuo. The hexane fraction was chromatographed on an open column with Si gel as an absorbent. The column was eluted with

Table 1. Chemical Shifts of $\mathbf{1}$ and 7-Methyl-1,6-dimethoxynapthalene.

Atom	${ }^{13} \mathrm{C}$ Standard Chemical Shifts (ppm)			Chemical Shift (ppm)		
	1-OMe	$2-\mathrm{OMe}$	2-Me	6		1
C-1	+27.6	-22.0	-1.0	127.7	154.6	154.93
C-2	-22.0	+31.9	+9.6	125.6	101.5	100.55
C-3	+0.1	-6.9	+2.3	125.6	125.6	119.20
C-4	-7.6	+ 1.6	-0.1	127.7	118.9	130.74
C-5	-0.4	-0.1	-0.2	127.7	105.2	110.20
C-6	+0.6	-2.2	-0.8	125.6	160.4	157.80
C-7	-0.6	+0.7	+0.1	125.6	127.7	127.15
C-8	-5.8	-1.0	-0.6	127.7	122.5	123.37
C-4a	+1.0	-4.4	-1.8	133.4	133.8	130.77
C-8a	-7.9	+ 1.2	+0.2	133.4	121.3	114.32

Figure 1. X-ray model of Compound 1.
hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. The $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane fractions were combined. Recrystallization using a mixture of hexane $/ \mathrm{CHCl}_{3}$ yielded $1(620 \mathrm{mg})$ as green needles: $\mathrm{mp} 184-185^{\circ}$; ir (KBr) $\gamma \max 1670,1630$, $1595,1510,1390,1375,1240,1170,1095 \mathrm{~cm}^{-1}$, uv $\lambda \max 213 \mathrm{~nm}(\log \epsilon=4.74), 234 \mathrm{~nm}(\log$ $\epsilon=4.47$), $256 \mathrm{~nm}(\log \epsilon=4.57), 403 \mathrm{~nm}(\log \epsilon=4.09)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}, \mathrm{C} 73.62, \mathrm{H} 6.75$, mol wr 326.39, found C $73.465, \mathrm{H} 6.79$, $\mathrm{mol} w \mathrm{mt}(\mathrm{ms}) 326.16 .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.56(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$ and $\mathrm{H}-12), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 4.02(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$ and $\mathrm{H}-16), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.28$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 7.32 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 8.04 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), ${ }^{13} \mathrm{C}$ nmr 199.32 (C-2), 157.80 (C-6), 154.93 (C-9), 147.42 (C-3), 130.77 (C-5a), 130.74 (C-4a), 127.15 (C-7), 123.37 (C-8), 119.20 (C-10a), 114.32 (C9a), 110.20 (C-5), 100.65 (C-10), 99.01 (C-4), 55.90 (C-14), 55.47 (C-13), 55.36 (C-16), 49.52 (C-1), 28.33 (C-15), 16.65 (C-11 and C-12) ppm; eims m / z (rel. int. \%) 326(100), 311 (14), 283 (80), 268 (11).

X-RAY DATA FOR 1. $-\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$, orthorhombic, $a=19.463$ (3), $b=12.223(2), c=7.1131$ (4) \AA; $\mathrm{V}=1692.3$ (8) \AA^{3} (by least-squares techniques involving diffractometer-measured 2θ-values for fifteen centered reflections, $\lambda=1.54178 \AA$), space group $P_{n a 2}, Z=4, D_{\text {calc }}=1.281 \mathrm{~g} / \mathrm{cm}^{3}$. Colorless needles, mounted on glass fiber with epoxy. Crystal dimensions $0.2 \times 0.2 \times 0.2 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha) 0.678 \mathrm{~mm}^{-1}$.

Data for unit cell determination and also for the structural studies were collected utilizing a Syntex P2 ${ }_{1}$ diffractometer. A total of 1254 reflections were measured at room temperature with graphite-monochromated $\operatorname{CuK} \alpha$ radiation up to $\theta=57^{\circ}$, using an $\boldsymbol{\omega}$-scan speed of $1.50^{\circ} \% \mathrm{~min}$. After data reduction, 675 reflections with $\mathrm{F} \geq 3 \sigma(\mathrm{~F})$ were taken as observed.

The structure was solved by direct methods; hydrogen atoms were obtained from a difference Fourier map. Full-matrix least-squares refinements with anisotropic thermal parameters for all non-hydrogen atoms and fixed isotropic thermal parameters for riding hydrogen atoms led to $\mathrm{R}=0.069$ and $\mathrm{R}_{\mathrm{w}}=0.073$ for 217 variables $\left\{\right.$ weighting scheme: $\left.w^{-1}=\left\{\sigma^{2}(F)+0.001\left(F^{2}\right)\right]\right\}$. The final difference Fourier synthesis showed no significant features $\left[0.29 \mathrm{e}^{-3}\right]$. The final calculations were performed using the SHELXTL PLUS system of programs on a Micro VAX II computer. ${ }^{2}$

ACKNOWLEDGMENTS

This work was made possible by the support of Chulalongkorn University through the Natural Products Unir Cell Project. This work was partially supported by NIH grant CA24487.

[^1]
LITERATURE CITED

1. "Index Kewensis Plantarum Phanerogamarum," Oxford University Press, New York, 1911, p. 464.
2. T. Smitinand, "Thai Plant Names," Fanny Publishing, Bangkok, 1980, p. 335.
3. A.I. Scott, "Interpretation of the Ultraviolet Spectra of Natural Products," Pergamon Press, Germany, 1964, p. 7.
4. S. Jose, J. Sandstrom, and T. Drakenberg, Org. Magn. Reson., 11, 239 (1978).
5. E.H. Paul, Org. Magn. Reson., 12, 109 (1979).

Received 7 March 1989

[^0]: ${ }^{1}$ On leave from the Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, People's Republic of China.

[^1]: ${ }^{2}$ Atomic coordinates for this structure have been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

